Chapter 5
Other Interesting Topics

5.1 Introduction

This chapter comprises a series of topics which are of general interest and extend
the range of applications of boundary elements but are not as essential as those
described in previous chapters to understand the method.

One of the most interesting possibilities of boundary elements is that it is easy
to combine the technique with other numerical methods. The range of combinations
varies from those needed in analysis where boundary layers are interfaced to
boundary element regions, to simple coupling in static analysis. Sometimes for
instance, matrices for potential fluids are formed using boundary elements and
combined with finite element models for shells which represent a container, an
aerospace structure, an offshore platform, etc. The coupling is particularly simple
as boundary elements accepts discontinuity of variables and full compatibility is
not required to obtain accurate answers. Ways of combining finite and boundary
elements are particularly attractive in view of the widespread use of both methods.
Although many papers have been published on the topic, section 5.2 only discusses
comparatively simple ways of carrying out this combination. The first technique
is a purely intuitive approach which is not justified mathematically. It consists of
using the finite element results from a global solution as boundary conditions
when focusing on a particular region of the system. The finite element boundary
variables used are potentials or displacements as they are given with a higher
order of accuracy than fluxes or tractions.

The first of the other two approaches consists of treating the boundary element
region as a finite element and appropriately transforming the matrices. The second
approach consists of treating the finite element region as a boundary element and
manipulating the FE matrices in such a way that they can be implemented in the
boundary element system. Both approaches give similar results and using one or
the other will depend on which part of the problem (i.e. finite or boundary element
parts) is predominant.

Section 5.3 discusses special types of boundary element, which are produced
by asymptotic considerations when the boundary is far from the part under
perturbation. Under certain hypotheses these elements are equivalent to the
radiation type conditions presented by different authors. The section gives a
methodology of how these conditions can be obtained from basic boundary integral
considerations.

One of the first applications of boundary elements was the study of elastic
fracture mechanics problems for which singularities arise at the tip of the crack.
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These problems have been solved by different authors using a variety of boundary
integral formulations but more recently they have been studied using a simple
transformation which produces a singularity at the tip of the crack. This is achieved
by using the so-called quarter point elements which were first developed for finite
elements. They give a very elegant formulation in the case of boundary elements,
which directly produce the stress intensity coefficients in a way that can not be
done using finite elements.

The last section in this chapter explains how the technique can be expanded
to study steady state elastodynamics problems. Although this is similar to what
has been shown in Chapter 2 for the Helmholtz equation (section 2.14) it was
decided to include this amongst the special topics as the frequency dependent
formulation in elasticity is rather complex.

In spite of that, the implementation of the resulting relationships in existing
elastostatics codes (including those presented in Chapter 4 of this book) can be
attempted by the reader as explained in section 5.5.

5.2 Combination of Boundary and Finite Elements

There are sometimes advantages in combining finite and boundary element
solutions. In many unbounded field problems for instance, boundary elements
may provide the appropriate conditions to represent the infinite domain while
finite elements can solve complex material properties in the near domain. Boundary
elements are also of interest in regions of high stresses or potentials, but finite
elements may be adequate for other parts of the boundary and may be simpler
to use in cases such as layered continuum, anisotropic and non-linear materials.
Hence it is important for the analyst to be able to represent a body using finite
or boundary element techniques, depending on the particular geometries or
boundary conditions.

There are many papers written on the combination of the two techniques, but
from the viewpoint of simplicity of application as it relates to the codes already
described here, we will consider only three methods, i.e.

(1) Method (i) Using the finite element solution to define the boundary con-
ditions for a localized boundary element region.
(ii) Method (ii) Treating a boundary element region as a finite element and
combining with finite elements.
(ili) Method (iii) The converse of method (ii), i.e. treating a finite element region
as an equivalent boundary element and combining with the other boundary
element region.

Method (i) This approach is a purely empirical technique and consists of having
solved a problem using finite elements to ‘zoom’ in a particular region using as
boundary conditions the finite element results for displacements or potentials.
The approach can not easily be justified from a mathematical standpoint but
it is used in several codes and seems to produce reasonable results. One can apply
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this technique in the case of studying a region with a crack as shown in figure
5.1. First a global finite element solution is found using the mesh described in
figure 5.1(a) and then the boundary element method is used to study the crack
region in more detail as shown in figure 5.1(b) using as boundary conditions the
displacements obtained in the finite element code. The reason why the approach
works is due to the fact that the finite element results for displacements (or
potentials) are usually accurate. The method would not give good results if the
finite element stresses (or fluxes) were used instead.

Method (ii) The second approach consists in treating the boundary element
region as a finite element. Consider the two regions as shown in figure 5.2 where
region Q' s expressed in terms of boundary solutions and Q discretized into finite
elements.

The boundary element matrices for Q! can be written as

HU = GP (5.1)

Figure 5.1. Method (i) combining global finite element solution with a localized
boundary element region
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while for region Q2 the finite element matrices are
KU=F (5.2)

where K is the stiffness matrix of the problem and F the equivalent nodal forces.
Note that U represents the displacements (or potentials) and P are the surface
tractions (or fluxes).

In order to combine (5.1) and (5.2) one can reduce the first to a finite element
form by inverting G, i.e.

G 'HU=P (5.3)

Next one can convert the values of tractions at the nodes (as given by P) into an
equivalent nodal force matrix of the type used in finite elements. This is done by
weighting the boundary tractions by the interpolation function used for the
displacements and produces a matrix M such that

F =MP (5.4)

This operation is standard in finite elements although it is unusual to write the
distribution matrix M in an explicit form.
Equation (5.3) can now be written as

M(G 'H)U =MP = F’ (5.5)

where the right hand side vector has the same form as in finite elements.
One can now write formula (5.5) as

KU=F (5.6)

where K' = MG~ 'H.

K’ is a stiffness matrix obtained from the boundary element formulation. It is
generally asymmetric due to the approximations involved in the discretization
process and the choice of the assumed solution. Although this matrix is sometimes
symmetrized simply taking an average of the off-diagonal terms (i.c. assuming it
can be written as 1(K’ + K'")) this is not recommended as it produces inaccurate
results in many practical applications. Obtaining symmetric boundary element
stiffness matrices may involve double integration of the type used in Galerkin’s
BE formulation which are beyond the scope of this book.

The equivalent finite element type matrices of equation (5.6) can now be
assembled with the matrices corresponding to region Q? in figure 5.2 to form the
global stiffness matrix.

Method (iii) This approach was proposed by Brebbia and Georgiou in 1979 [1]
and consists in treating the finite element region as an equivalent boundary element.
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Consider the two regions described in figure 5.2. For region 1 one can write
the governing equations in a manner similar to that previously shown for
multiregion problems, i.e.

: 1U1}_ : 1{1)1}
[H H']{U} =[G" Gil, (5.7)

where the subscript I defines the interface.
The matrices for the finite element region 2 can be written in a similar manner
using the concept of distribution matrix defined in formula (5.4), i.e.

2 2 UZ - 2 2 P2
[K2 K] {Uf}_[M M,]{Plz} (5.8)

By writing P, =P} = —P? and U, =U} = U} one automatically satisfies the
equilibrium and compatibility conditions on the interface and equation (5.7) and
(5.8) can be rearranged and written together as follows.

Ul
[Hl H; -G} 0] U, [Gl 0]{})1} 59)
o k2 » kx|p | Lo mzllp? '
UZ

These equations will of course need to be rearranged in accordance with the
boundary conditions. Notice that this approach does not require any matrix
inversion.

Method (ii) — without forced symmetrization — and method (iii) are equivalent
and give the same numerical results. Using one or the other depends mainly upon
the problem in the sense of which part is more dominant, the finite elements or
the boundary elements, in which case one can use method (ii) or (iii) respectively.

I
Figure 5.2 Boundary divided into a finite elements and a boundary element region
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Method (ii) is essentially a stiffness method and can easily be incorporated in
existing finite element packages, although it does require the inversion of the non-
banded G matrix. In contrast, method (iii) does not require this inversion and
both displacements and tractions remain unknown along the interface.

5.3 Approximate Boundary Elements

Combination of boundary elements with finite elements is particularly useful when
dealing with domains tending to infinity. In these cases the near region is discretized
into finite elements and the outside domain is simulated with the boundary elements
on the interface of the two regions. This avoids having to discretize a larger region
and at a certain distance putting some boundary conditions which try to represent
the domain going to infinity. The main drawback of this approach however, is
that the boundary element matrices are fully populated representing coupling of
all the nodes on the boundary. In practice this coupling can be avoided by assuming
that far from the region being perturbed the solution behaves in a smooth manner.
This produces an approximate boundary element formulation that in many cases
is equivalent to the use of radiation or similar boundary conditions. It is important
to point out that these approximate boundary elements are not related to the
so-called infinite elements which are based on domain rather than boundary
integration.

Consider the example shown in figure 5.3 where the internal region is assumed
to be subdivided into finite elements and the external region extending to infinity
is modelled using boundary elements. Let us consider that the problem is governed
by the Laplace’s equation and hence the fundamental solution for two dimensions is

u* = 1-ln<l> (5.10)
2 r

For any point in the internal domain (including those near but not on the I;
interface) one can write, '

Ju*qdl = [ ug* dI’ (5.11)
I I';

Substituting the fundamental solution (5.10) into (5.11) leads to

f 1n<l>q dl’ = j" ui<ln<l>> ar (5.12)
r r r, On r

Notice that the reference point is considered to be outside the external region and
hence ¢; = 0. The integration still needs to be carried out over all the I, interfaces
and all v and q values are interrelated. One can simplify the formulation however,
if I; is considered to be a circle of sufficiently large radius R which is assumed to
be constant, hence dI" = R df, where @ is the angular coordinate. Notice also that
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Figure 5.3 Finite and boundary element regions

n = r if the reference point is far from the boundary I'; and hence equation (5.12)

can be written as

2 1
| (mlahu-)da:o
0 ron r

(5.13)

q = Ou/or.
This is a special form of the Sommerfeld condition which can also be written as,

(5.14)

1
—u=(1nr)a—u on I
r or

Applying similar considerations for three dimensional potential problems one finds

another form of this condition, i.e.
(5.15)

ou 1
—lf+~u:0 on I

or r
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The above radiation condition can then be applied as a boundary condition for
the finite element model describing the internal region.

The interesting aspect of this procedure is that it can be generalized to find
approximate radiation conditions in cases where the fundamental solution is
complex. Brebbia and Walker [2] have shown how given the Helmholtz equation

Vu+ K = 0 (5.16)

where k is the wave number and u the potential, the corresponding approximate
boundary elements (or radiation condition) on I are

6_1{_”“:0 on I, (5.17)
on
The demonstration follows the same steps as the one above.

Applications for wave diffraction problems demonstrate that the results
obtained using this approach are accurate. Other applications include harbour
resonance problems also governed by the Helmholtz equation [2] and soil
dynamics problems.

5.4 Singular Elements for Fracture Mechanics

Several approaches have been proposed in finite and boundary elements to model
the singular behaviour of stresses at a crack tip which occurs in elastic materials.
It is well known that the stresses near a traction free crack in an in-plane loaded
plate can be written as, [3]

0 6 3
011=——K-I—cosg<l—singsin§9)~ Ku sin—<2+cos~cos—9>
J@mr)y 2 2 2 J@nrr) 2 22

Ky cosgsingcosée (5.18)
J@ar)y 2 2 2

K, 0 .0 .3
Gy = cos—| 1+sin—sin-8 |+
JQ@rr) 2 2 2

.8 6 3 K, g .6 .3
01, sin — cos — cos — 6 + cos ~ l—smismi

I
JQ@rry 22 2 J@2nr) 2
where r and 0 are defined in figure 5.4, K, and K; are the stress intensity factors

corresponding to the opening and sliding mode, respectively, and the size of r is
much smaller than the crack length. The displacements near the crack tip are,

K 0 8\ K 0
U, == <—r—>cos—<l—2v+sin2~>+—”\/<L>sin—(2—2v+cosze>
U 2% 2 2 u 2r 2 2
K #\ K 0
Uy =—" <L>sing<2—2v—cosz~>+l\/<L>cos§<~1+2v+sin2—>
u 2n 2 2 u 27 2 2

(5.19)
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where u is the shear modulus and v the Poisson ratio as in plane strain problems.
Formulae (5.18) and (5.19) describe the stress and displacement distribution near
the crack tip and have been obtained analytically. Values of K, and K ; are difficult
to obtain for general cases and it is then important to be able to model the behaviour
of cracks in boundary element codes.

Snyder and Cruse [4], Stern et al. [5] and Cruse [6] presented several
procedures to compute stress intemsity factors using boundary elements, in
particular a singular quarter-point boundary element was proposed by Blandford
et al. [7] and by Martinez and Dominguez [8]. While some of the approaches
proposed are complex to implement, the quarter point element is easy to use in
boundary elements, gives accurate results and is no way sensitive to the discretization
used. As with other boundary element techniques, the domain needs to be divided
into subdomains by means of interfaces (figure 5.5) starting at the crack tip in
order to avoid having two similar sets of equations which will produce a singular
matrix. This subdivision avoids the numerical problems derived from having two
displacement variables for the same geometrical point along the crack. All
boundaries are discretized into elements and elements are also defined along the
two faces of the crack and the interfaces between different regions. Boundary
conditions are applied at external boundaries including zero traction conditions
along the crack and the usual equilibrium and compatibility requirements are
satisfied at the interfaces.

The quarter point element is based on the quadratic expansion. In this case
any displacement, traction or coordinate such as x, and x, can be represented as

f=off (5.20)

where f represents geometrical displacements or traction variables as seen in
equations (4.51) to (4.54) and ¢ are the quadratic shape function matrices. Any
of these components can be written as,

fi:¢1fil+¢2fi2+¢3f? (5.21)

For the particular case that the quadratic element has a straight-line geometry
and the mid-node is placed at a quarter of the length (figure 5.6) a simple
relationship can be found between the coordinate ¢ and the variable 7 along the
element. In this case equation (5.21) gives

fi=a} +a?\/§+a.~3§ (5.22)
where

al =1}

al =—fP+4f -3} (5.23)

a}=2f?—4f?+2f}

Equation (5.22) ensures that for this position of the mid-point, the \/;7 behaviour
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Figure 5.4 Coordinates near the tip

of the displacement near the crack tip as given by equation (5.19) is reproduced
by the boundary element. This type of element is usually known as the ‘quarter-
point element’.

Since in the BEM displacements and tractions are represented independently,
a correct representation of the displacements is compatible with an incorrect
representation of the tractions. However, the singularity may be included in the
representation of the tractions by using modified shape functions. Assume, for
instance, that the crack tip is at node 1 (figure 5.6). One may write,

¢1P;/+¢2P;\/+¢3 \/ (5.24)

pi=¢,p} + &0} + ¢35} (5.25)

or

where @,, ¢, and ¢, are the modified shape functions which include the r~1/2

singularity. Now p/ stands for the value of p; at node j divided by the value of
@, at that node; i.e.,

p? =p}
pl Mpz/z

70 {

Equation (5.24) for p; can now be written as

f +at + 513\/ (5.26)

where a! = pl; a? = —p? + 4p? — 3p! and a} = 2p; — 4p7 + 2p;.

Using the quarter-point element with the shape functions of equation (5.25) for
the tractions, both displacements and tractions will be correctly represented. The
element including this kind of representation is known as the traction singular
quarter-point element.
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Figure 5.6 Quadratic and quadratic quarter point elements

The first and second mode stress intensity factors can be defined by the following
limits (figure 5.4).

K, = lim {\/2nx, 0,,}

x10

' _ (5.27)
K, = lim {{/2nx, 0,,}
x1 -0

If the boundary discretization is done in such a way that the first interface
element from the crack tip has 6 = 0° and this element is a singular quarter-point
boundary element, then for this element, 7 = x,, p, = 0,5, p, = 0,, and the nodal
values for the tractions at the tip node K are:

Py = lim g} /1) = im {15,/

x1—+0

5.28
ps =lim {pf /F/l} = lim {o;,/x,/I} o2
70

x40

Thus, the stress intensity factors coincide with the tractions nodal values except
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for a constant and may be computed directly with the boundary element codc, i.c.

K, =p5Q2nl)'?

(5.29)
Ky =pi@2nl)?

Martinez and Dominguez [8] have shown how the use of the traction nodal
values of the singular element at the crack tip (equation (5.29)) is substantially
less sensitive to the discretization than any of the displacement correlation
procedures.

Example 5.1

As an example, figure 5.7 shows the case of a centre cracked rectangular plate that
has been studied by several authors [7], [8]. Because of the symmetry only one
quarter of the plate is discretized. The total number of elements is nine, two of
them being singular quarter-point elements. Plane stress is assumed and a Poisson’s
ratio v=_0.2. Figure 5.8 shows the error of the value computed for K, using
boundary elements versus the relative length of the singular quarter-point elements.

o=1

—-] !

" P P

L/3=4a T—- ]
a

a —-L—— 3 e}
Figure 5.7 Centre cracked plate under traction. Discretization of one quarter of
the plate.
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Figure 58 K, stress intensity factor computed using quarter-point singular
boundary elements

The value given by Bowie and Neal [8] is taken as reference as this value is
accurate within one percent. The results obtained by the quarter-point boundary
element procedure are given by K,. Results computed using singular quarter-point
elements and two different displacement correlation formulae (K,,, and K,,,)
are given also for comparison. As can be seen in the figure, the nodal traction
procedure with singular quarter-point elements (K,) gives accurate results for a
wide range of element sizes.

The implementation of a singular quarter-point element in the ELQUABE
code of Chapter 4, requires only some minor changes in the integration routine.

5.5 Steady State Elastodynamics

Another interesting application of Boundary Elements which can be solved by
modifying the codes presented in the previous chapters is the case of steady state
elastodynamics, This is in a certain way similar to the harmonic wave propagation
equation — or Helmholtz equation - discussed in section 2.14.
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The equilibrium equations for an elastic region under dynamic loading can be
written as,

%94 4 b, — pil (5.30)
0x;

J

where ii; are the components of the acceleration. Substituting stresses in terms of
displacements in the above formulae one obtains the dynamic expression of
Navier’s equation, i.e.

(A + p)u; ji + pu; j; + b, = pil; (5.31)

where 4 and u are the Lamé’s coefficients. If all variables are considered as harmonic
functions in time, with a frequency w, equation (5.31) becomes

(). + .u)“j,ji + :uui,jj + bi + pa)zu,- = 0 (532)

The boundary element formulation can be obtained as before using weighted
residuals and when both the actual and weighting field are assumed to be harmonic,
the integral equations become the same as for the static case, i.e.

chui + | phw dT" = § utipy dT + [ ulb, dQ (5.33)
r r )

where all the displacements, tractions and body forces are now frequency
dependent. The fundamental solution corresponds to a point load with time
variation exp(—iwt) and satisfies equation (5.32) without body forces, i.c.

(A + ki + puo + po’uf + Aw)=0 (5.34)

For three dimensional problems this solution is given by
X 1
Uy =—"1 (Yo — xraril (5.35)
anpC:

where « = 4, C is the shear wave velocity, C, the P-wave velocity, and the functions
Y and y are

2,2 ;

v=(1- G Sryoiontc)

w*r?  ior r
_<C_§><_ C? +&>exp(—iwr/cp) (5.36)
C} w*r*  ior r

. _<3c§ N 3C, N 1) exp(—iwr/Cy)

w*r?  ior r

2 .
m<_c_sz>(_ 3G 36, 1>——e"p(_’“’r/C") (5.37)

C? *r®  iwr r
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where

cs=\/E and C,= [“FH)
p

P

The tractions are given by the following relationships

d 1 or 2 or
PITIM—{<'%——X>}<5 +rkn1>*“x<”kr1_2"krt >
arn {\ dr “on on

dy o [C? d d
~2—)—Crkr,—r+< 2><—¢~l~3‘ x)r,nk} (5.38)
ol an T\ C? P

The steady-state fundamental solution for two-dimensions is also given by
equations (5.35) and (5.38) for the case « = 2, and the following i and y functions

()Gl enl)] e
C, ior C, C, C,

ior\ C2 iwr
N G W I L 5.40
g 2<cs> C? <C> (40

Functions K,, K, and K, are the modified Bessel functions of the second kind
and order 0, 1 and 2 respectively.

Integral equation (5.33) can then be discretized into boundary elements in the
same form as for elastostatics and the codes previously studied can be extended
to elastodynamics simply by changing the fundamental solutions and the solutions
to compute internal stresses and set all variables as complex. For instance codes
ELCONBE and ELQUABE of Chapter 4 would only require changes in
subroutines EXTINEC and LOCINEC or EXTINEQ and LOCINEQ in addition
to the general changes in the definition of variables as complex.

It is worth pointing out that as the fundamental solution is frequency dependent
the system AX = F has to be formed and solved for each frequency. The numerical
treatment of Bessel function in the two dimensional formulation also requires more
care than the logarithm of the static problem, in particular for high and very low
frequency values.

Some applications of the use of boundary element methods in steady state
elastodynamics can be seen in the work of Dominguez and Alarcén [10] and
Dominguez [11].

and
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