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Summary and objectives 
 
In the tutorial 3, we presented other examples on the derivation of the boundary integral equation in the direct 
form. Mainly, elasticity and plate in bending problems were discussed. In this tutorial, we will discuss the 
definitions and the methods of derivation of fundamental solutions. The use of such solution within the 
boundary element method was discussed in the former tutorial. A table presents the commonly used forms of 
fundamental solution is given. Also a method based on simple analogy to the algebraic partial fraction is 
discussed to decompose compound differential operators. In the next tutorial, we will continue discussing 
how to set up the fundamental solutions for complex matrix operators. 
 
1  Definitions 
The fundamental solution can be defined in the most simple way as the response due to unit source in an 
infinite problem. For example when we say Uij(ξ,x) is the fundamental solution for displacements in 
elasticity problems that means: Uij(ξ,x) is the displacement at point x in the direction j due to unit point load 
applied at ξ in the i direction. It can be seen that Uij(ξ,x) is a kernel between two-points. From Betti 
reciprocal theory it is clear that Uij(ξ,x)=Uji(ξ,x). 
 
Mathematically the fundamental solution of a problem is the solution of the governing differential 
equation when the Dirac delta is acting as a forcing term, appears of the right hand side [1]. It has 
to be noted that no boundary conditions is forced to simulate the infinite nature of the problem. In 
other words, it is the particular solution of the problem corresponding to the Dirac delta 
distribution. Provided that the Dirac delta posses the singular nature, the fundamental solution is 
also singular. The name “fundamental” came from the fact that it is the solution of the most 
“fundamental” problem in mechanics, which deals with a unit source in an infinite body. It is 
called also the principal solution; the singular solution or the free-space Green’s function. From 
this definitions, the fundamental solution can be defined as follows: 
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where L is a scalar differential operator and δ(ξ,x) is the Paul Dirac delta, in which  is the ξ source 
point and the x is a field point. If L is a matrix operator, equation (1) can be re-written as follows: 
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It has to be noted that no boundary conditions are enforced in both equations (1) and (2). In this 
tutorial we will discuss the derivation of the fundamental solution in equation (1) whereas the 
derivation of fundamental solutions for matrix operators as that of equation (2) will be discussed 
in the next tutorial.  
 
2  Useful properties of the Paul Dirac delta 
The following properties of the Paul Dirac delta could be used in the derivation of the 
fundamental solution [1]: 
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in which Ω is an arbitrary domain. For simplicity, it will be chosen as either a circle or sphere for 
two- and three-dimensional problems, respectively [2]. It has to be noted that we already have 
made use of the third property (equation (5)) in the former two tutorials. In this tutorial the second 
property (equation (4)) will help in the steps of the fundamental solution derivation.  
 
3  Methods of derivation 
Derivation of fundamental solutions is a lengthy task for difficult operators. However, in many 
cases, this could be a systematic procedure. The general technique for deriving the fundamental 
solution is to use integral transforms, such as, Fourier, Laplace or Hankel transforms [1]. Such a 
technique involves complicated mathematics and has very sophisticated procedures. Therefore it 
will be covered in latter tutorial as an advanced topic. In the next section, we will demonstrate the 
derivation of the fundamental solution for well-known simple operators such as the Laplacian. The 
procedures will be described for both two- and three-dimensional problems. In section 5, a table 
will be presented to summarize the fundamental solutions for commonly used simple operators. 
Then in section 6, a simple analogy to the algebraic partial fraction technique will be used to 
decompose compound operators to the simple forms presented in section 5.  
 
 



4  Fundamental solutions using integration 
In this section we will demonstrate a technique based on direct integration and making use of the 
properties of the Dirac delta to construct the fundamental solution. The starting point of this 
technique is to solve the following homogeneous equation: 
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This equation can be solved using any simple technique in the calculus such as, direct integration 
in polar coordinate, separation of variables, variation of parameters or using complex variable 
transformation (for the case of two dimensional problems only). Some constants will appear due 
to the integration procedures. In order to obtain such constants, we can make use of the Dirac 
Delta property in equation (4) after combining it with equation (1), to give: 
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As the domain Ω can be chosen arbitrary, one can present it as a small circle (sphere for the three-
dimensional case) of a radius ε, for simplicity.  Then the limit in equation (7) will be performed as 
ε 0. It has to be noted that the integration in equation (7) could be performed easily by 
transforming it to the boundary of the circle using the integration by parts procedures presented in 
tutorial 2. More details about this method is presented by Rahman in Ref. [2]. The following 
examples will demonstrate that idea. 
 
4.1 Laplace operator in two-dimension 

Consider the Laplace equation in two-dimension: 
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The first step to construct the fundamental solution  is to solve the following homogeneous 
equation: 
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Or in polar coordinate it could be expressed as follows: 
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By integration, one can obtain: 
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In order to obtain the constants a and b in equation (11) we will make use of equation (7), to give: 
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Applying the integration by parts (or Green’s second identity), it gives: 
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Use the polar coordinate notation, where θ=Γ rdd , one can obtain: 
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Noting that for a circle 1
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final form of the fundamental solution can be written as: 
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It has to be noted that, in carrying out the integration in the former example, the following 
alternative transformation could be used [3]: 
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and it is easy to prove that: 
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4.2 Laplace operator in the three-dimension 

Similar to the two-dimensional case, Equation (9) can be re-written as: 
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By integration one can obtain: 
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By satisfying the condition in equation (7), one can obtain: 
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Noting that for a sphere 1
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 and , then we can easy obtain: a is arbitrary 

constant and
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5  Common fundamental solution 
The most commonly fundamental solutions are used as basics for many problems in computational 
mechanics are presented in Table 1 for one-, two- and three-dimensional case [4].  
 

Table 1: Fundamental solutions for most commonly used operators. 
 
Equation One-dimensional Two-dimensional Three-dimensional 
Laplace 
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Where H(1) and K0 are Hankel and Bessel functions respectively. 
 
6  Partial fraction analogy 
In the former section, we have demonstrated simple procedures to derive the fundamental solution 
for simple operators such as the Laplacian. In this section we will present a technique based on an 
analogy to the algebraic partial fraction to decompose compound operator to simple operators of 



the forms given in Table 1. In order to demonstrate this method, we will consider the following 
examples: 
 
6.1 Example 1: 

Consider if we want to construct the fundamental solution of the following compound operator: 
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From Table 1, we can obtain the following fundamental solutions U1 and U2, where: 
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and 
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In order to obtain the fundamental solution U in terms of U1 and U2, we try to make an analogy to 
the partial fraction theory, as follows: 
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6.2 Example 2: 

The following example will be considered to make the idea more clear. Consider that we want to 
construct the fundamental solution of the following operator: 
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From Table 1, we can obtain fundamental solutions U1 and U2 where: 
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Following the same analogy of the previous example, one can write: 
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As it can be seen that, the partial fraction analogy helps in decomposing compound scalar 
operators to well-known simple operators. 
 
7  Conclusions 
In this tutorial, we have demonstrated simple procedures for deriving the fundamental solutions 
for well know and commonly used differential operators in computational mechanics. We also 
covered a technique based on an analogy to the simple concept of algebraic partial fractions to 
obtain the fundamental solution for compound operators consist of product of the well-know 
simple operators. In the next tutorial we will cover the use of Hörmander method to decouple 
complex operators. We will give many examples to show the step-by-step derivation of the 
fundamental solution kernels. 
 

8  Exercise:  
1- Using the method described in section 4, obtain the fundamental solution for the 

modified Helmholtz equation. 
2- Use the partial fraction analogy, find the fundamental solution for the following operator: 
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9  Solution of the exercise in tutorial 3 
In order to derive the direct boundary integral equation for the shear-deformable plate bending 
resting on the two-parameter Pasternak foundation model, the following identity can be written: 
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The first integral will lead to the same results as described in Tutorial 3. Now, we will consider the 
second integral: 
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The first integral on the right hand side will remains as it is, whereas the second integral can be 
decomposed using the integration by parts procedures (Green’s second identity) twice (in similar 
manner as we used before for Laplace equation), to give: 
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Then the final integral equation can be written as: 
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And the fundamental solution cam be obtained from: 
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Making use of the properties of the Dirac Delta, one can write: 
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Which is the required boundary integral equation. For more details on the derivation, the reader 
can consult Ref. [5]. 
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