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Summary and objectives 
 
In this tutorial we will introduce the reader to how the direct integral forms for a partial differential equation 
can be derived. We will start from the well-known form for the integration by parts rule and then we will 
generalize it to demonstrate how Green’s second identity works. Therefore the main objectives of this tutorial 
are: 

1. To review the philosophy behind the integration by part rule. 
2. To generalize the integration by parts formulae to the form of Green’s second identity for multi- 

dimensional system. 
3. To review the rules of indicial notation. 
4. To derive the integral equation formulation for Laplace equation. 
5. To extend the above formulation to Poisson’s equation. 
6. To give an overview of the different possible research areas in the BEM. 

 
1  Introduction 
In the last tutorial, we describe the difficulties of boundary elements so difficult. We also 
highlighted the different sources of errors that appear in boundary element codes.  
In this tutorial we will show that the basic idea behind boundary elements is the same as the 
integration by parts rule, which is very well-known and used by most of the readers.  

 
2 Integration by parts 
Consider u and v are two functions of the independent variable x in one-dimensional space (see 
Fig. 1). The following integration by parts formulae is very well known in mathematics: 
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Equation (1) can be re-written in a more convenient notation as follows: 
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where the (•)’ denotes the derivatives of (•) with respect to x.  
 
 
 
 

 

 

 

 

Figure 1: Definitions for the 1D integration by parts. 
    
We shall now examine the former formulae in more depth. Consider the first term: 
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This appears strange as the term is a result of an integration process, which always (by definition) 
involves summation. Now the question is: from where came the minus sign in the last equation? 
The answer is simple as this term originally is the summation of (u v n) at the boundary points x1 
and x2 (noting that n is the normal to the problem boundary, see Figure 1). Therefore this term can 
be re-written as follows: 
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Figure 2: Body definitions. 
 
The second term on the left hand side of equation (2) is an integration over the domain, which can 
be written in more generalized form as follows: 
 x
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From the results of equations (4) and (5), equation (2) can be re-written in a more generalized 
form as follows: 
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This is Green’s second identity for the one-dimensional problems. For higher derivatives, equation 
(6) can be generalized as follows: 
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Applying the integration by parts of the second integral on the left hand side of equation (7) it 
gives: 
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Therefore the final formulae can be written as follows: 
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where Γ=(x1, x2) is the boundary of the domain Ω=(x1 x2). Before we go further it is important to 
note the following: 

1- The main idea of the integration by parts, whether it is in equation (6) or (9), is to swap 
the differential operator from function v to the function u. 

2- In doing such swapping some boundary terms appear (recall the first term on the right 
hand side of equation (6) or (9)). 

3- In equation (6) the integration by parts is done only once. Therefore the last domain 
integral on the RHS having a negative sign; whereas when the integration by parts is 
carried out twice this integral appears with a positive sign as in equation (9). Generally 
the sign of this integral is equal to (-1)m where m in the number of times the integration 
by parts is carried out. 

Commonly, in the BEM the integration by parts is carried out twice, however in some cases it is 
carried out only once or as many as four times. 
 
If equations (6) and (9) are generalized to a higher dimensional system (for example 2D or 3D) we 
obtain the following form (consider Figure 2) [1]: 
 



                    (10) ∫∫∫ Ω+Ω=Ω duvdvudvu  L   *L  L adj

 Ω
where L is a deferential operator, Ladj is the adjoint differential operator (which will be covered in 
future tutorials), and L* is the differential operator defined by nα L*=L,α. Herein the indicial 
notation is used and will be discussed in the next section. This equation seems difficult to 
understand, however, it will be clarified when we illustrate it using the example of the Laplace 
equation (see section 4). 

ΩΓ

 
It is worth noting that originally the integration by parts formulae is derived from Green’s second 
identity. However, in the former explanations we approached the Green’s second identity from the 
integration by parts for the sake of clarity. 
 
3  Indicial (Tensor) notation  
 
In much BEM literature the tensor notation is used (see Ref. [1]). This notation was introduced by 
Einstein. Herein we will review some basic principles, which will be used from now and 
henceforth in future tutorials. In the following sub sections we will consider only the case of the 
2D formulation; therefore the indexes will vary from 1 to 2. The three-dimensional case can be 
treated in a similar manner but with indexes varying from 1 to 3. 
 
3.1 The Kronecker delta symbol: 
 
This symbol represents the identity matrix as follows: 
 
                    (11) βα

δ βααβ

=

==

     if    

     if     1

        ≠0

3.2 The Vector r: 
 
Consider two points ξ and x in the xi space as shown in Figure 2. The coordinates of the point x, 
for example, can be referred to as x1(x), x2(x) or as in the short tensor notation as xα(x) where α=1 
and 2. The Euclidian distance between two points ξ and x in the xi space (always positive) is 
defined using the vector r or r(ξ,x) as follows: 
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In order to write r in the indicial notation form, we will make use of one rule for the tensor 
notation states: repeated indexes denote summation, for example: Gθθ=G11+G22. It has to be noted 
that in this case the index θ can be replaced by any other symbol without affecting the final 
results; therefore the index θ is said to be dummy index. It has to be noted that dummy indexes 
usually appear in pairs and cannot be repeated. Using the summation rule the vector r can be 
rewritten as: 
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It is interesting that if the summation rule is applied to the Kronecker delta for 2D problems, it 
gives (noting that α is a dummy index): 
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And similarly, for 3D problems: δαα=3. 
 
3.3 Derivatives of r:  
 
The vector r is defined from the point ξ (the source point) to the point x (the field point). In the 
indicial notation, the comma is used to denote derivatives with respect to the coordinates of the 
field point, as follows: 
 
        
                    (15) 
 
Using the definition of r in equation (13), and by differentiating both sides with respect to the 
coordinate of the field point, we can obtain: 
 
 
 
 
                    (16) 
or: 
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Noting that: 
 
 
   and                 (18) 
 
Then: 
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It has to be noted that only a minus sign is the difference between the derivation with respect to 
the field and those with respect to the source point (see equation (15)). In most of BEM books the 
comma denotes the derivatives with respect to the coordinate of the fields point; otherwise it will 
be explicitly stated. 
 
 
3.4 Higher derivatives of r: 
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By default, the former derivatives are taken with respect to the coordinate of the field point. If 
these derivatives were taken with respect to the coordinate of the source point, it leads to: 
 

)(
,

,
ξβ

α
αβ x

r
∂
∂

= r
 
 
                    (21) 

r
rr αββα δ−

=
,

 
which lead to the same result as in equation (20), but with minus sign, as previously mentioned. 
Another higher derivative of r can be obtained in similar way. 
 
3.5 The Laplacian of a function: 

A Laplacian of a function F is defined as: 
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In this case α is a dummy index. If the Laplacian of a function is equal to zero, the function is said 
to be a harmonic function. 
 
3.6 The Bi-harmonic operator: 

The bi-harmonic operator (∇4) is defined as follows: 
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Note in the above definition that dummy pairs of indexes cannot be repeated. 

 
4  Laplace Equation 

 
In this section, the integral equation formulation for the Laplace equation will be derived step by 
step. The Laplace equation governs many problems in engineering and physics, such as torsion of 
solids and potential flow. The differential form for this equation is given as follows: 
 
                    (25) 0)x(2 =∇ u
 
This governing equation is defined for a certain problem, for example the problem shown in 
Figure 2. The density u(x) is the potential at any point x inside the domain or on the boundary. 
The notation u(x) denotes that u is function of the coordinate of the point x; therefore it is an 
abbreviation for the notation u(x1(x), x2(x)). In order to establish the direct integral form for 
differential equation (25), the following integral identity is considered: 
 
                    (26) ( ) 0  )x( *2 =Ω∇∫ dUu
 Ω
where U* is a weighing function or functional. It has to be noted that, if this weighting function is 
chosen to be an approximate function to minimize the error in the solution of u, the former 
statement is said to be a weighted residual statement as in the case of the finite element method. In 
the case of the BEM, as we will discuss later, we do not need a weighted residual statement as the 
U* will be chosen as analytical and exact kernels.  
 
In the next steps of derivation we will follow the same steps as from equation (7) by replacing v’’ 
by the ∇2u(x) and u(x) by U* to obtain a similar equation to equation (9). In order to do so, we 
apply Green’s Identity (or the integration by parts) to equation (26). It gives: 
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Again, applying Green’s identity to the second integral in equation (27), gives: 
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Noting that: 
 
   and                  (29) *,

 
where q is the flux. Equation (28) can be re-written in the following form: 
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It can be seen from the last equation that the first two integrals are boundary terms (a similar result 
to that of equation (9)) and the last integral is a domain integral term which contains the adjoint 
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operator (which is the Laplacian). The last integral represents the first type of domain integrals 
that appear in the BEM. It is important, now, to show how to get rid of this domain integral. 

Before considering the domain integral, we can show how U* can be selected: 
Let  u(x)=c (constant) then q(x)=0 and: 
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which, by definition, is a trivial solution (satisfying Green’s second identity). However the identity 
in equation (31) is very useful and we will make extensive use of it in future tutorials on 
transforming domain integrals to the boundary. 
 
Let U*(x)=c then q*(x)=0 and: 
 
                    (32) 0 )x( =Γ∫ dq
 Γ
which means the integration of the flux along a closed boundary is zero, which matches the rules 
of physics (flux equilibrium). In elasticity problem q will denote tractions and in this case the 
above equation represents the equilibrium. 
 
Recalling equation (30), In order to get rid of the last domain integral the following case could be 
used: 
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where δ(ξ,x) is the Paul Dirac delta which is not a function, it is a distribution or a functional. The 
Dirac delta is defined as zero everywhere, except at ξ=x where it is infinity. The singular 
particular solution of equation (33) is called the fundamental solution. Now the U*(ξ,x) are called 
two-point kernels. Substituting equation (33) into the last domain integral in equation (30) gives:  
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where equation (34) is a well-know property of the Dirac delta distribution. It can be seen that 
using the Dirac delta distribution, we converted the domain integral into a jump term. It is worth 
noting that herein the point ξ is treated as an internal point. Also, it has to be noted that the 
negative sign on the RHS of equation (33) is only for convention and could be ignored, without 
affecting the final formulation. 

 Substituting equation (34) into equation (30) gives: 
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which is the boundary integral equation for the Laplace equation. 
 
5  Poisson Equation 
 
Poisson’s equation is given by: 
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where the non homogeneous term b(x) denotes internal sources or body forces. In order to obtain 
the direct integral equation for such an equation, we will follow the same steps as before. Equation 
(36) will be weighted using weights U*: 
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which can be split to give: 
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After integrating by parts twice, the first integral will lead to the same result as that of equation 
(35), whereas the second integral will remain unchanged. Therefore the final integral form can be 
obtained as follows: 
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The last integral on the RHS represents the second type of domain integrals that appear in the 
BEM formulation. This integral can be transformed to the boundary using many techniques (as 
will be discussed in future tutorials). 
 
6  Research directions in the area of Boundary Elements 

Figure 3 shows different possible areas of research in the BEM. In this primer, up to now, we have 
seen an introduction to exercise of three theoretical areas: how to set up the integral forms, the use 
of fundamental solutions, and domain integrals in BEM. Throughout this primer we will cover all 
of these possible areas. 
 
7  Conclusions and future tutorials 

The idea of the traditional integration by parts has been discussed and generalized. We 
demonstrated that this idea is based on Green’s second identity. Then this idea is used to derive 
the direct integral forms. 

In this tutorial we have covered: 
1. How to set up a direct integral form for a differential equation. 
2. The weighting function could be chosen to be any function, however using the two-point 

fundamental solutions as weighting functions reduce a certain type of domain integrals to 
jump terms. 

3. That there are mainly two types of domain integrals in the BEM. One including the 
adjoint operator and the other for non-homogeneous terms. 

4. Different areas of research in the BEM. 
 
In the coming tutorial we will discuss more complex examples in setting up the direct integral 
equations for problems such as elasticity problems and bending of elastic plates. 
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Figure 3: Research areas in the B
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